
Modeling and Simulation of Software Developer Behavior

Philippe Nguyen
McGill University

pnguye23@cs.mcgill.ca

Abstract

In this paper, we present a simulator for software

developer behavior. The motivation behind this project
is to model the behavior of a software developer
conducting a program understanding task with a
particular concern in mind. Applications for this
system could be in research, where case studies could
be made less expensive, or in the design of software
development tools. As a whole, the simulator takes the
shape of a non-deterministic decision generator. An
important feature of the simulator is the modeling of
two levels of developer expertise: beginner and
advanced.

Validation was done on two medium sized systems:
jHotDraw, and jEdit. From the test runs performed, we
observe that the simulator behaves as expected.
Limitations to the simulator include some performance
issues, and the level of sophistication used in modeling
developer behavior. Improvements to the system
include better artificial intelligence, and added detail
for the source model.

1. Introduction

Software engineering distinguishes itself from
other engineering discipline by the importance human
behavior holds in practice. This has led to an outburst
of research on human behavior when performing
software engineering and reengineering tasks. This
type of research usually requires qualitative
experiments involving live subjects. For example, one
study involved observing developers of different levels
of expertise as they investigated code in the aim of
modifying a feature [1]. A common concern of such
experiments is the time and effort spent in finding
subjects, making them perform a task, and transcribing
the qualitative data collected. Our project seeks to
build a simulator modeling the behavior of a software
developer performing a code navigation task. This
work is based on M. Robillard’s paper that describes

an empirical study aimed at evaluating the efficiency
of software developers in code investigation tasks [1].

The first part of this paper describes at a high level
the functional properties of the simulator. The
projected challenges are listed in the next section. The
following part gives a description of the design
decisions made to cope with these challenges. Next,
we validate our tool on 2 source models. First, we test
the simulator a source model of jHotDraw, a Java GUI
framework for technical and structured graphics.
Second, we apply the simulator to jEdit, a text editor
implemented in Java representing a slightly larger
system. Finally, we conclude with limitations of our
approach and projected future work.

2. Functional Description

The simulator will try to replicate the behavior of
software developers navigating code. Developers are
assumed to have a goal in mind while traversing code.

The input of the simulator is the program
description: it describes all classes, methods, fields,
and relations of the code to be navigated, as well as the
file structure of the system. In addition, the simulator
has multiple parameters to consider:
1) Parameters of developer level: using previous

studies, we can model the level of expertise of a
developer. This will influence the model of
developer behavior

2) Description of a concern that the developer should
try to uncover as he/she navigates the code

3) Starting method: the method by which the
developer can start navigating the code base

The output of a simulation run will be an
investigation transcript, which, as described in [2],
constitutes of a list of discovered methods, and the
activity by which they were discovered. The possible
activities are: B – opening a file from the code
browser, such as the one in the Eclipse IDE; C –
discovering an element using a cross-reference search;
R – recalling an element previously opened, such as re-
opening an editor window from a tabbed pane; L –

scrolling up and down in a file; K – a keyword search.
Because of complexity reasons, our simulator does not
currently support K activities.

3. Challenges

This project presents many challenges. One of them
will be the level of smartness of the behavior model: in
order to model a developer who has a defined goal in
mind (i.e. to explore a specific concern), assigning
probability on choices of action will ultimately have to
be done in a smarter way than uniformly. Also,
different ways of terminating the simulation will be
explored. For example, we could take the approach of
stopping the simulation when a certain number of
events are captured; or, we could start with a target set
of methods to be discovered, and stop the simulation
when those methods are actually discovered by the
simulator. In addition, determining how to assign the
probabilities to each choice will be a difficult task:
having only qualitative descriptions of developer
behavior, we will have to translate them into
quantitative parameters.

In a simulation point of view, the first challenge
will be to have a clear definition of what represents the
state. Secondly, we will need to determine a suitable
level of abstraction, and a time base. For example, we
could abstract timing information away and only work
at a discrete time step level. In this situation, time is
encoded only in the order of steps in the investigation
transcript. Lastly, the core issue will be to implement
the transition function, which essentially represents the
developer’s behavior when making new decisions.

4. Design

As a whole, the simulator will take the shape of a
non-deterministic decision generator. Based on the
present state of the simulator, the modeled developer is
presented with a set of possible choices of methods
and activities, from which the model will select its next
decision. A large part of the simulator will then be to
assign the proper probability to each possible choice in
order to simulate as realistically as possible the
thinking process of a developer who needs to
investigate code in order to uncover a certain concern.

The next sections describe the different components
of the simulator. Design decisions taken to overcome
the identified challenges are exposed.

4.1 Simulator Architecture

The simulation is composed of two main parts: a
model and a simulation kernel. The overall architecture
of the simulator is depicted in figure 1.

Inputs

referencesDB contains referencing information

about the target source code. Information such as
method calls done by methods, and field declarations is
included in this input.

orederedDB contains file structure information
about the target source code. File content, file size, and
method size (in terms of number of characters) is given
by this input. Also, crucial information about the
ordering in which files and methods appear in the code
browser is available through this input.

Concern description defines the concern
motivating the developer’s navigation task. The
description could be done in a natural language;
however, because of implementation considerations,
keyword based descriptions are preferable.

Developer level specifies what level of
developer expertise the program should simulate.
Developer level is modeled as a set of parameters, such
as the size of the memory and the relative importance
to give to each activity. The details of all developer
parameters are discussed in the “Interface” section.
Currently, the simulator offers three presets: random,
beginner, and advanced. The random level represents a
developer who gives equal weight to all choices
presented. We implement this level in order to have a
base against which to compare other levels.

4.2 Code Structure Model

The code structure model remains static, and is only
queried by the developer model during simulation.

The code structure is modeled as a digraph, in
which vertices represent the elements (classes, fields,
and methods), and edges encodes a reachability
relation between two elements. For example, element
B is reachable from element A if there is a cross-
reference relation from A to B, or if B is physically in
proximity of A (e.g. the developer can reach B by
shortly scrolling from A).

The model also considers a derived type of cross-
reference: accesses by elements to a common field.
Essentially, we model the fact that, even though two
elements might not call each other directly, they still
might be related if they access the same field.

Figure 1 Architecture of the Software Developer Behavior Simulator

The reader should note that in the current version of
the simulator only method elements are considered.
This is for performance and complexity reasons.
However, it is not far from reality, as developers
mostly spend their time examining methods.
Additionally, results presented in [1] also ignore fields.

The methods reachable from a B activity are the
ones last viewed in the set of files that are in a certain
range in the browser from the currently opened file.

The methods reachable from an R activity are the
ones last viewed in the set of files previously opened.
They are stored inside a buffer. For performance
reasons again, the buffer size is limited, which, in
reality, could hold true if the environment used in the
navigation task has the option to limit the number of
simultaneously opened tabs.

In order to save on space, references to java
libraries are omitted from the code structure model.
Even though we might believe that developers would
seldom navigate through these libraries, this estimation
does take away some realism from the simulator.

4.3 Developer Behavior Model

The developer behavior model looks at the code
structure model in order to make decision. A decision

is defined as a selected method to look at, using a
certain activity.

Essentially, developer behavior is modeled as a
choice generator followed by a semi-random decision
maker: given a seed method, the developer queries the
code structure model for other reachable methods, as
well as the activities needed to reach them. Depending
on the level of expertise, probabilities are assigned to
each choice. Finally, a random number generator is
called in order to select the next element to examine.

The transition function implements the process of
generating the choices and making the decisions. It is
affected by two things:

1) Developer level
2) Concern description

Developer Level

Based on [1], experts perform more C actions than

L or B actions, since browsing and scrolling are
considered less effective. Also, experts may not go
back to what they’ve previously examined as often as
beginners may. In other words, there will be smaller
loops in a beginner’s investigation trace. This is where
the memory of the developer comes in: if developers
remember having made a decision, they might give it
less weight when selecting their next element to

examine. The memory is modeled as a list of
previously examined elements. To model the fact that
beginners tend to refer back to previously examined
elements, the maximum size of the memory is used as
a differentiating parameter between advanced and
beginner developers.

Concern description

The simulator should be able to take as input

keywords describing the concern the developer would
have in mind when traversing the code base. Thus, it
needs a way to quantitatively correlate the concern
description with the different methods in the code
structure model. We achieve this by performing
information retrieval (IR) techniques to determine
which elements are more related to the concern at
hand, and assign probability based on this.

In this case, the method names are parsed in order
to build the index of keywords. Each method name
represents a document, and the concern description is
the query. The particular IR technique applied is the
vector space model [2].

Implementation considerations

In order to keep the different influencing factors

modularized, we employ a layered approach when
assigning probabilities to choices.

First, based on the element being currently
examined, generate the list choices (i.e. potential
decisions consisting of {Element, Activity} tuples).
The layers are applied to give weight to each choice:

Layer 1) Assign the same weight to all choices. The
random developer level would stop here.

Layer 2) Factor-in the concern description. The
weight of each choice is multiplied by some factor
which takes into account the degree of similarity
between the element and the concern description.

Layer 3) Factor-in the developer level. This mainly
involves assigning more or less weight to a decision
based on the activity it involves, and verifying whether
the element of the choice is still in the developer’s
memory. When considering the memory, the simulator
takes into account the “freshness” of the past decision:
the fresher the choice’s element is in the developer’s
memory, the less weight we should assign to that
choice.

The weights are then normalized, and the
cumulative distribution function is built. A pseudo-
random number generator then selects from the CDF
the next element to be examined.

This approach is advantageous because it keeps the
number of if statements relatively controllable. It

modularizes the influencing factors, so that they can
easily be modified, removed, or added. Moreover, it
allows users to enable or disable certain influencers.

Output function

The output function takes care of outputting the

correct events in investigation transcript format. The
format is described in [3].

4.4 Simulation Kernel

The simulation kernel is responsible for two things:
the time-base, and updating the state of the developer
behavior model.

Time base

The simulator’s time base is discrete. The ordering

of the events in the investigation transcript encodes the
time progression of the simulator.

The number of iterations can be adjusted using the
interface of the simulator. We decided not to opt for
the option of setting a target set of goal methods to
determine when to terminate the simulation because
that approach would potentially create infinite
simulations. Also, it does not simulate reality well:
developers do not pre-define a set of target methods to
explore. Rather, they investigate the code until they
reach a certain level of confidence that they have
understood the concern at hand.

On the other hand, fixing a number of iterations is
by no means the best approximation of reality:
developers do not have a limit on the number of
actions they can perform. Also, we cannot compare
performance between levels of expertise in terms of
time to complete a task. Still, fixing the number of
iterations is the simplest approach that can at least
ensure termination of the simulation. Implementing a
better termination condition is one of our prominent
future goals.

State

The state of the simulator is encapsulated inside the

developer behavior model. It includes:
1) The current element examined
2) The contents of the accessed files buffer
3) The contents of the developer memory.

Updating the state consists of making a new decision,
which translates to selecting a new element to
examine, adding the containing file to the file buffer if
a new file was opened, and adding the new decision in
the memory.

Figure 2 GUI of the Developer Behavior Simulator

4.5 Interface

Figure 2 shows the simulator’s graphical user
interface. On the left hand side, the user can specify
the file paths of the referenceDB file and the
orderedDB file, as well as specify the starting
method and the concern description. Other simulation
input can be entered, such as the number of
simulations to run, and the number of desired events
within each transcript. In order to allow experimenters
to adjust the different parameters that influence the
simulation of a developer, the right hand side of the
window lets the user model the level of the developer,
as well as adjust the properties of the development
environment (IDE).

Developer Parameters

Random Developer Checkbox – checking this box
puts the simulator in random mode, where all
generated choices are weighted equally when making a
decision.

Developer Level Combo Box – allows the user to
select a saved parameter setting. Saving a setting
(using the “Save Developer As” menu item) makes the
setting available in the combo box.

Memory Size – sets the size of the developer’s
memory. Since the simulator takes into account the
fact that developers might give less weight to elements
that are still in the developer’s memory, the size of the
memory is an important factor in determining the level
of expertise of the developer.

Memory Factor – the factor by which to multiply
the weight of a choice when that choice is found to be
in the memory of the developer. It should be between
0.0 and 1.0.

C, B, L, and R Factors – the factors by which to
multiply the weight of a choice, based on the activity
that the choice involves.

Startup period – sets a period of time at the
beginning of the simulation during which the C, B, L,
and R factors are ignored. In other words, it models the
fact that, initially, developers may not give preference
to any particular activity, and instead may give equal
weight to all activities in order to arrive at an element
that relates to the concern in mind as early as possible.

Concern Factor – the factor by which to multiply
the weight of a choice when the method name of that
choice has been determined to be related to the
concern description. Setting this factor to a very high
value will make the weights of choices related to the
concern much larger than the weights of choices that
are not related to the concern.

IDE Parameters

Browser Range – specifies how many files are
reachable above and below the file containing the
element being currently examined. In other terms, it
specifies how many elements are reachable by a B
activity. This models the fact that developers may stay
within a certain range when exploring in the browser.

Editor Range – specifies, in number of characters,
how far a developer may scroll up and down within the
code editor. In other terms, it specifies how many
elements are reachable from an L activity: for the
currently examined element, E, every other element
contained inside the same file as E and for which the
distance, in number of characters, from E is lesser than
or equal to the editor range is considered reachable
using by scrolling.

Buffer Size – sets the maximum size of the accessed
files buffer. It models the fact that in certain IDEs,
such as Eclipse, the developer can set the maximum
number of opened panes. When the buffer has reached
maximum capacity and a new file is opened, the pane
that was opened earliest is closed.

5. Evaluation

In order to validate our approach, we conducted
simulation runs on two real-world systems: jHotDraw
and jEdit. The input files for each of these programs
were provided by our supervisor. Our expectations
from this experiment are:

1) That the beginner and advanced levels do
differ from the random level: thus, we expect
elements for the beginner and advanced levels
to be more related to the described concern;

2) That the resulting traces will reflect the
desired differences between a beginner and an
advanced developer, namely that a trace for
the advanced level will contain more C
activities, and that the breadth of elements
examined will be wider for the advanced
developer.

In order to verify these hypotheses, we will mainly
consider three aspects: the most frequently examined
elements, the total number of elements examined, and
the usage frequency of activities.

For each developer level, we ran 100 simulations
and compiled the traces into a single file. Collected
data include the consolidated frequency of each
examined elements, the total number of elements
observed, and the frequency for each type of activity.
Tables 1 to 5 summarize the conditions under which
the simulations were run.

Table 1: Resource Specification

CPU AMD Athlon™ 64
Memory 512MB DDR RAM
Operating System MS Windows XP Pro
Running Environment Eclipse 3.0.1
JDK 1.4

Table 2: Developer Parameters Settings

 Beginner Advanced
Memory Size 10 50
Memory Factor 0.001 0.001
C Factor 1.0 10.0
L Factor 10.0 2.0
B Factor 5.0 1.0
R Factor 1.0 1.0
Startup Period 20 20
Concern Factor 1000.0 1000.0

Table 3: IDE Parameters Settings

Browser Range 10 files
Editor Range 5000 chars
Buffer Size 20 panes

Table 4: Simulation Settings

Number of simulations 100
Number of events per simulation 200

Table 5: System-specific Inputs

jHotDraw

referenceDB
orderedDB

Available at on the project’s website
[4]

Starting
Method

CH.ifa.draw.figures.
 Attribute.<init>()

Concern
Description “attribute figure”

jEdit

referenceDB
orderedDB

Available at on the project’s website
[4]

Starting
Method

org.gjt.sp.jedit.options.
LoadSaveOptionPane._init()

Concern
Description “autosave”

To reinforce our evaluation, we asked a developer

possessing a thorough knowledge of both target
systems’ source code to examine investigation
transcripts given by the simulator. Note that the choice
of concern descriptions and seed methods for our
simulation runs was suggested by this expert. This
person’s opinion on whether the simulator has
generated realistic output is a determining factor in
evaluating the usability of the system for future
researchers.

5.1 Results

An aggregated version of the results from the
simulation runs is presented in the appendices. The
raw data is available on the project’s website [4].

The results are excerpts from the tally files for
jHotDraw and jEdit. These files are generated after
each batch of simulations is executed. In this case, they
are compilations of the 100 simulations of each
developer level on each code base. The information
contained includes: a list of the elements examined
during all the simulations, sorted in descending order
of frequency; the total number of examined elements;
the frequency distribution of the activities used by the
developer; and information about the developer and
IDE parameters used during the simulations.

5.2 Analysis

To analyze the gathered data, we will first look at
whether the output for the advanced and beginner
levels presents significant differences from the purely
random simulations. Next, we will compare the output

from the advanced and beginner levels in order to
verify our previously stated expectations.

5.2.1 Difference from Random Decision Making

Looking at the most frequently examined elements
from both jEdit and jHotDraw, we see that the non-
random levels give more importance to elements that
are related to the concern. From this, we conclude that
the IR module works as expected, and that a significant
degree of difference from a purely random approach is
achieved by our model of developer behavior.

Surprisingly, the distributions of activities used do
not show a uniform distribution for the random
simulations. This is probably a result of the nature of
the different code structures: different structures may
offer more or less opportunities for each activity. For
example, a code base containing very long methods
that cross-reference themselves often would present
more opportunities for C actions, and fewer
opportunities for L actions. Another surprise is that, in
the case of jEdit, the total number of examined
elements is larger for the advanced level than it is for
the random level. Intuitively, we would expect a
random simulation to cover more elements than a
simulation in which mostly elements that are related to
a concern are chosen. However, the memory factor
involved in non-random simulations does have an
effect of the breadth of the investigation transcripts; in
fact, conducting a test run with a modified version of
the advanced settings in which the memory factor is set
to 1.0 yielded a total number of examined elements
much lesser than the one for the random simulation.

5.2.2 Advanced vs. Beginner

The advanced and beginner levels differ in all
observed aspects. The activity distributions reflect the
activity factors set in the developer parameters for each
level, with some previously discussed fluctuations due
to code structure: C activities are predominant with the
advanced developer, while beginner developers mostly
use L and B activities. This concords well with the
observations made in [1]. The IDE parameters also
influence the distribution of the used activities. A
larger browser range increases the number of potential
decisions involving B activities, in which case a higher
frequency of B activities would be observed. Varying
the editor range has a same effect on L activities, and
R activities are similarly affected by the buffer size.

Comparing the number of examined elements in
both jHotDraw and jEdit reveals that indeed the
breadth of examination for the advanced developer is
much wider than the one for the beginner developer.

As discussed in the previous section, this is mostly due
to the memory factor: larger memory size for advanced
developers results in fewer repeated examination of the
same element, and hence to more explored elements.

Looking at the elements that were most frequently
examined, we observe that simulations for both levels
of expertise mostly looked at the same elements. This
is to be expected, since the location of the concern
being explored does not change depending on the level
of the developer. However, the frequency distributions
for the advanced developer are much more uniform
than for the beginner developer. Indeed, for the
beginner level, much of the distribution is concentrated
in the first three or four elements, while the
distribution is more evenly spread out for the advanced
level. This demonstrates that the simulator models the
beginner developers’ tendency to focus only on a few
methods when navigating through code; contrastingly,
advanced developers cover much more of the code
base, and thus gain a broader understanding of the
concern.

Also, in the case of jHotDraw, the fact that the top
ten most examined elements for the beginner developer
were all from the same package, whereas the top ten
elements for the advanced developer were from
diverse packages, reinforces our observation that
beginners tend to localize their traversal in a much
smaller area of the source code. At first sight, the
reader might think that the advanced developer has
missed some methods from the AttributeFigure
package. However, looking at the complete results
reveals that, in fact, the other methods of the package
barely missed being included in the top ten elements.

5.2.3 Expert Opinion

The opinion of the person familiar with the
jHotDraw and jEdit code bases on the realism of the
simulator output is mitigated. On the positive side, he
acknowledges that the most frequently examined
methods for both systems are in fact very relevant to
the concern descriptions. Also, he has recognized very
realistic episodes inside the investigation transcripts.
On the negative side, the results are still too random in
his opinion. Additionally, he has recommended that
class hierarchies be taken into consideration when
assigning weights to choices. Moreover, according to
him, the frequency of B activities is too high: as a
remedy to this, we might think of setting a threshold
based on similarity to the concern: elements in browser
range that are not sufficiently relevant to the concern
would not be included in the list of choices. Lastly, the
expert has noticed an important deviation from reality
presented by the simulator. Scrolling events don't seem

to follow the order of the methods contained in the
orderedDB file. Upon reflection, we realize that this
problem is due to the fact that though distance from the
currently examined element is taken into account when
selecting which methods are reachable from an L
activity, the actual value of the distance is not used
when calculating the weight to assign to the choices. In
other words, the simulator does not currently assign
more weight to a method that is closer to the current
one being examined.

6. Limitations

The simulator presents limitations other than the
ones previously mentioned. An important one involves
performance and scalability. While it probably still
presents a speed-up as compared to actual
experimentation with live participants, the simulator is
not optimized performance-wise. The biggest hits lie in
the loading of the code structure and the in the
calculations done by the IR algorithm. However, once
these two operations are done, the actual simulation
runs in reasonable time. As an indication, jHotDraw
required around 3 minutes to load into memory, while
jEdit required around 10 minutes. Once loaded though,
their simulations only took a few seconds.

Another limitation is the level of sophistication used
to model human behavior. For example, the factors
affecting the weights of each choice were chosen on a
trial-and-adjust basis. More time would be needed to
either tweak these factors in order to reflect reality as
much as possible, or to apply other layers of
influencers to the simulator.

7. Future Work

The simulator could benefit from more advanced
artificial intelligence. In its current state, it does little
to model human reasoning in depth. More work could
be done to add more sophistication to the developer
behavior model.

Future work could also include integrating a
smarter termination condition. One possibility would
be to specify a target confidence level. This could
somehow measure the progress made by the developer
in discovering elements related to the concern in mind.
When enough confidence is obtained, the simulation
would stop. Such an approach could potentially allow
experimenters to determine if, for example, advanced
developers finish their tasks in fewer actions than
beginner developers. However, using a confidence
level could still potentially make the simulator run
infinitely; therefore, the approach would most

probably need a failsafe, which could take the form of
a limit in the number of events it can generate.

Adding detail to the code structure model could also
make the simulator give more realistic output.
Examples of potential details to be added are fields.
Fields present a particular challenge in observational
studies: experimenters using video captures to observe
participant behavior cannot easily determine when a
developer is examining a particular field, since many
fields could appear at the same time on the screen. The
observers would then have to explicitly ask the
participants to explain which fields they are examining
(method that is often referred to as “think aloud”
process). This approach is however more time
consuming and presents the danger of undesirable
biasing of participant behavior. Therefore, integrating
fields in the simulator would be a great advantage.

The realism of the simulator’s output would also
require more validation. For this, more systems need to
be tested upon.

8. Conclusion

The motivation for this project was to develop a
simulator that would model the behavior of a
developer who is trying to locate a concern inside a
code base. Such a simulator could be used by
researchers who study human-computer interactions,
or by software engineers building software
development tools.

The simulator keeps a model of the code structure
and simulates developer behavior by making decisions
on which elements to examine, and on which activities
to perform. Developer level can be adjusted by
specifying values for certain parameters, such as the
size of the developer’s memory and the importance
given to elements related to the concern.

Validation was performed on two real-world
systems, jHotDraw and jEdit. The goals of the
experiment were to see whether the implemented
developer levels significantly differentiated themselves
from a purely random simulator, to compare the
advanced level with the beginner level, and to evaluate
the degree of realism of the simulator’s output.

In all, the simulator presents great potential for
automatically locating concerns using information
retrieval techniques, and for generating investigation
transcripts that model different levels of developer
expertise. However, there are some limitations, such as
scalability and performance, and sophistication of the
artificial intelligence used. Future work for this project
should thus be aimed at improving those aspects.

9. References

[1] M.P. Robillard, W. Coelho, and G.C. Murphy,
How Effective Developers Investigate Source Code: An
Exploratory Study, IEEE Transactions on Software
Engineering, November 2004
[2] M.P Robillard and G.C Murphy, Automatically
Inferring Concern Code from Program Investigation
Activities, Proceedings of the 18th International
Conference on Automated Software Engineering, pp.
225–234, IEEE Computer Society Press, October 2003
[3] Rich Ackerman, “Vector Model Information
Retrieval”, Theory of Information Retrieval, Florida
State University, September 2003, URL:
http://www.hray.com/5264/math.htm
[4] Project Website, URL: http://www.cs.mcgill.ca/
~pnguye23/COMP522/project/project.htm

APPENDIX A - Results for jHotDraw

Top 10 most frequently examined elements

Random Beginner Advanced
Element Freq Element Freq Element Freq
CH.ifa.draw.figures.AttributeFigure.
<init>() 206 CH.ifa.draw.figures.

AttributeFigure.<init>() 623 CH.ifa.draw.figures.AttributeFigure.
getAttribute(java.lang.String) 247

CH.ifa.draw.samples.javadraw.
JavaDrawApp.createTools
(javax.swing.JToolBar)

136
CH.ifa.draw.figures.
AttributeFigure.getAttribute
(java.lang.String)

607
CH.ifa.draw.framework.Figure.
setAttribute(java.lang.String,
java.lang.Object)

243

CH.ifa.draw.samples.javadraw.
JavaDrawApplet.createTools
(javax.swing.JPanel)

128
CH.ifa.draw.figures.
AttributeFigure.getDefaultAttribute
(java.lang.String)

543
CH.ifa.draw.applet.DrawApplet.
createAttributeChoices
(javax.swing.JPanel)

237

CH.ifa.draw.figures.LineDecoration.
draw(java.awt.Graphics,int,int,int,
int)

128
CH.ifa.draw.figures.
AttributeFigure.setAttribute
(java.lang.String,java.lang.Object)

533
CH.ifa.draw.figures.PolyLineFigure.
setAttribute(java.lang.String,
java.lang.Object)

236

CH.ifa.draw.figures.GroupFigure.
handles() 116

CH.ifa.draw.figures.
AttributeFigure.draw
(java.awt.Graphics)

519

CH.ifa.draw.standard.
ChangeAttributeCommand.<init>
(java.lang.String,java.lang.String,
java.lang.Object,
CH.ifa.draw.framework.DrawingEditor)

224

CH.ifa.draw.samples.nothing.
NothingApplet.createTools
(javax.swing.JPanel)

110
CH.ifa.draw.figures.
AttributeFigure.read
(CH.ifa.draw.util.StorableInput)

491
CH.ifa.draw.figures.AttributeFigure.
setAttribute(java.lang.String,
java.lang.Object)

224

CH.ifa.draw.figures.GroupHandle.
<init>(CH.ifa.draw.framework.Figure,
CH.ifa.draw.framework.Locator)

107
CH.ifa.draw.figures.
AttributeFigure.
initializeAttributes()

485 CH.ifa.draw.standard.
ChangeAttributeCommand.execute() 220

CH.ifa.draw.figures.ElbowHandle.<init>
(CH.ifa.draw.figures.LineConnection,
int)

96
CH.ifa.draw.figures.
AttributeFigure.drawFrame
(java.awt.Graphics)

477 CH.ifa.draw.framework.Figure.
getAttribute(java.lang.String) 220

CH.ifa.draw.samples.pert.PertApplet.
createTools(javax.swing.JPanel) 96

CH.ifa.draw.figures.
AttributeFigure.drawBackground
(java.awt.Graphics)

475
CH.ifa.draw.figures.GroupFigure.
setAttribute(java.lang.String,
java.lang.Object)

210

CH.ifa.draw.figures.
ShortestDistanceConnector.findPoint
(CH.ifa.draw.framework.ConnectionFigur
e,
boolean)

93 CH.ifa.draw.figures.
AttributeFigure.getFrameColor() 465

CH.ifa.draw.standard.
ChangeAttributeCommand.
createUndoActivity()

205

Total number of elements examined

 Random Beginner Advanced
Number of elements examined 1866 749 924

Frequency distribution of activities

Activity Random Beginner Advanced
C 2772 1222 9192
L 3633 13909 7265
B 7661 3422 2655
R 5934 1447 888

Distribution of Activities Used (jHotDraw)

0

2000

4000

6000

8000

10000

12000

14000

16000

C L B R

Activities

Fr
eq

ue
nc

y

Random
Beginner
Advanced

APPENDIX B - Results for jEdit

Top 10 most frequently examined elements

Random Beginner Advanced
Element Freq Element Freq Element Freq

org.gjt.sp.jedit.options.
LoadSaveOptionPane._init() 227

org.gjt.sp.jedit.Autosave.
actionPerformed
(java.awt.event.ActionEvent)

1417
org.gjt.sp.jedit.Autosave.
actionPerformed
(java.awt.event.ActionEvent)

402

org.gjt.sp.jedit.textarea.
JEditTextArea.scrollTo
(int,int,boolean)

223 org.gjt.sp.jedit.Autosave.
stop() 1295 org.gjt.sp.jedit.Buffer.

autosave() 292

org.gjt.sp.jedit.jEdit.
getProperty(java.lang.String) 185 org.gjt.sp.jedit.Autosave.

setInterval(int) 1290 org.gjt.sp.jedit.Autosave.
setInterval(int) 266

bsh.BSHArrayDimensions.eval
(bsh.CallStack,bsh.Interpreter) 179 org.gjt.sp.jedit.Autosave.

<init>() 1290 org.gjt.sp.jedit.Autosave.
stop() 264

gnu.regexp.RETokenChar.chain
(gnu.regexp.REToken) 165 org.gjt.sp.jedit.Buffer.

autosave() 983 org.gjt.sp.jedit.Autosave.
<init>() 224

org.gjt.sp.jedit.Registers.
setRegister(char,java.lang.String) 120 org.gjt.sp.jedit.Buffer.

getAutosaveFile() 310 org.gjt.sp.jedit.Buffer.
getAutosaveFile() 172

org.gjt.sp.jedit.options.
LoadSaveOptionPane._save() 116

org.gjt.sp.jedit.Buffer.
recoverAutosave
(org.gjt.sp.jedit.View)

138
org.gjt.sp.jedit.Buffer.
recoverAutosave
(org.gjt.sp.jedit.View)

163

bsh.ParseException.getErrorText() 109 org.gjt.sp.jedit.options.
LoadSaveOptionPane._init() 136 bsh.BSHArrayDimensions.eval

(bsh.CallStack,bsh.Interpreter) 145

org.gjt.sp.jedit.pluginmgr.
PluginManager.updateTree() 79 org.gjt.sp.jedit.SettingsReloader.

maybeReload(java.lang.String) 110
org.gjt.sp.jedit.textarea.
JEditTextArea.scrollTo
(int,int,boolean)

127

org.gjt.sp.jedit.options.
GutterOptionPane._init() 78 org.gjt.sp.jedit.buffer.

BufferIORequest.autosave() 82 org.gjt.sp.jedit.options.
LoadSaveOptionPane._init() 116

Total number of elements examined

 Random Beginner Advanced
Number of elements examined 2628 1993 3022

Frequency distribution of activities

Activity Random Beginner Advanced
C 9334 3505 15163
L 1971 7936 2194
B 4703 6700 2329
R 3992 1859 314

Distribution of Activities Used (jEdit)

0
2000
4000
6000
8000

10000
12000
14000
16000

C L B R

Activities

Fr
eq

ue
nc

y

Random
Beginner
Advanced

